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ABSTRACT

We investigate random projections in the context of randomly
projected linear discriminant analysis (LDA). We consider the
case in which the data of dimension p is randomly projected
onto a lower dimensional space before being fed to the classifier.
Using fundamental results from random matrix theory and
relying on some mild assumptions, we show that the asymptotic
performance in terms of probability of misclassification approaches
a deterministic quantity that only depends on the data statistics and
the dimensions involved. Such results permits to reliably predict
the performance of projected LDA as a function of the reduced
dimension d < p and thus helps to determine the minimum d to
achieve a certain desired performance. Finally, we validate our
results with finite-sample settings drawn from both synthetic data
and the popular MNIST dataset.

1. INTRODUCTION

Linear discriminant analysis or in short LDA is a popular supervised
classification technique that dates back to Fisher [1] where the
basic idea was to find the classifier that maximizes the ratio
between inter-class distance and intra-class variance. When the
data arise from the Gaussian distribution and the data statistics
are perfectly known LDA is known to be the Bayes classifier
[2, 3, 4]. Modern machine learning however involve data in high
dimensional spaces which makes conventional classification
techniques generally inefficient resulting in what is called the curse
of dimensionality [5]. Dimensionality reduction is one of the
promising solutions as it permits to downscale the data dimension
assuming that only a subset of features are relevant to classification.
A popular example of such dimensionality reduction techniques is
principal component analysis (PCA) which projects the data
onto the subspace spanned by the eigenvectors of the covariance
matrix relative to the highest eigenvalues. However, PCA is more
suitable for data reconstruction than for classification since the
principal components are chosen to maximize the data variance
and may be not necessarily the best discriminative directions from
a classification point of view.

An alternative way to perform dimensionality reduction
consists in using random projections that randomly project the data
onto a lower dimensional space [6, 7, 8]. The classification is

then performed on the projected data, resulting in a substantial
computational savings. From a performance point view, random
projections have shown good generalization performance as
discussed in the analyis of [6] through Vapnik–Chervonenkis type
bounds on the generalization error of linear classifiers with Gaussian
projections. Other works obtained some performance guarantees
for randomly-projected classifiers under some assumptions on the
data structure such as sparsity [9] or separability [10].

In this paper, we consider randomly-projected LDA when data
is assumed to arise from the multivariate Gaussian distribution.
We investigate the performance for general random projection
matrices satisfying some finite moment assumptions. The analysis
is carried out when both the data dimension p and the reduced
dimension d tends to infinity while their ratio is fixed, i.e.,
d/p→ constant ∈ (0, 1) . Based on fundamental results from
random matrix theory and on some assumptions controlling
the data statistics and the projection matrix, we show that the
classification risk converges to a universal limit that describes in a
closed form fashion the performance in terms of the statistics
and the dimensions involved. The result permits to examine the
fundamental limits of projected LDA under known statistics. In the
simulation results, we show that this assumption is not limiting
since accurate predictions can be made for real data in which the
data statistics are not known.

The remainder of this paper is organized as follows. In section
2, we give a brief overview of projected-LDA. In section 3, we
provide our main theoretical results and conclude the paper in
section 4 by making some conclusions and investigating some
possible future research directions.

2. LINEAR DISCRIMINANT ANALYSIS WITH
RANDOM PROJECTIONS

2.1. Linear discriminant analysis

We consider binary classification of data points arising from the
multivariate Gaussian distribution. For a datum x ∈ Rp, we say
x ∈ Ci, i ∈ {0, 1}, if and only if x writes as

x = µi + C1/2w, (1)

wherew ∼ N (0p, Ip), µi ∈ Rp are respectively the class means
and C ∈ Rp×p is a symmetric non-negative matrix representing



the data covariance matrix common to both classes. We denote by
πi ∈ [0, 1], the prior probability of x to belong to class Ci, for
i ∈ {0, 1}. Since both classes have the same covariance matrix, it
is well known in this setting that linear discriminant analysis (LDA)
is the classifier that maximizes the posterior probability P [Ci|x]
among all classifiers. In that sense, LDA is the Bayes rule classifier
which uses the following score as classification metric [2, 3]

WLDA (x) =

(
x− µ0 + µ1

2

)>
C−1 (µ0 − µ1) + log

π0
π1
.

(2)

Then, the classification rule is given by{
x ∈ C0 if WLDA (x) > 0
x ∈ C1 otherwise. (3)

One important metric to evaluate the performance of a given
classifier is the probability of misclassification that we denote by ε.
To compute this probability, we need to compute the conditional
probability of misclassification which is related to the error the
classifier makes on data sampled from a certain class. Formally
speaking, the conditional probability of misclassification for LDA
is given by

εLDA
i = P

[
(−1)

i
WLDA (x) < 0|x ∈ Ci

]
, i ∈ {0, 1}. (4)

Then, the total probability of misclassification is evaluated as
follows

εLDA = π0ε
LDA
0 + π1ε

LDA
1 . (5)

Again, relying on the Gaussian assumption of the data, εLDA
i can

be evaluated in closed form as [11, 12]

εLDA
i = Φ

− 1
2 (µ0 − µ1)

>
C−1 (µ0 − µ1) + (−1)

i+1
log π0

π1√
(µ0 − µ1)

>
C−1 (µ0 − µ1)

 .
(6)

Then, the total probability of misclassification reduces to

εLDA = Φ

[
−1

2

√
(µ0 − µ1)

>
C−1 (µ0 − µ1)

]
,

in the case of equal priors.

2.2. Random projections

As mentioned in the introduction, random projection is a popular
technique for dimensionality reduction, which merely consists in
projecting at random the feature vectors onto a lower-dimensional
space. The use of such random projections is originally motivated
by the Johnsonn–Lindenstrauss Lemma with an abundant literature
(see [13, 14, 8] and references therein) that states that for a given n

data points x1, · · · ,xn in Rp, ε ∈ (0, 1) and d > 8 logn
ε2 , there

exists a linear map f : Rp → Rd such that

(1− ε) ‖xi − xj‖2 ≤ ‖f (xi)− f (xj)‖2 ≤ (1 + ε) ‖xi − xj‖2 ,
(7)

for all i, j ∈ [n]. For d larger enough than log n, it is possible to
still preserve pairwise distances after randomly projecting the data
onto a d−dimensional space. Such an observation is the main
driver behind the projected LDA classifier and tends to suggest that
the projected LDA classifier, consisting in projecting data onto a
d-dimensional space prior to applying the LDA classifier would
probably present comparable performance with the classical
LDA, while allowing substantial computational savings, [15].
However, to satisfactorily address this question, it is important to
carry out a complete analysis that investigates the probability of
misclassification of the projected LDA classifier. In the sequel,
we denote by W ∈ Rd×p with d < p, a random linear map
with i.i.d entries having zero mean and variance 1/p. If we let
p to grow large enough, then WW> ≈ Id. This means that
asymptotically W behaves as a projection matrix. In the following,
we conduct a large dimensional analysis of projected-LDA where
we show under some mild assumptions that the probability of
misclassification converges in probability to a deterministic
quantity from which one can investigate the performance loss due
to dimensionality reduction.

3. MAIN RESULTS

3.1. Technical assumptions

In this section, we present our theoretical results on the asymptotic
performance of projected-LDA under the growth regime in
which the data dimension p and the reduced dimension d grow
large with d < n. We show that in this case the probability
of misclassification converges to a deterministic quantity that
describes in a closed form fashion the performance in terms of the
problem’s statistics and dimensions. More formally, the following
assumptions are considered.

Assumption 1 (Growth rate). As p, d → ∞ we assume the
following

• Data scaling: 0 < lim inf dp ≤ lim sup d
p ≤ 1,

• Mean scaling: Let µ = µ0 − µ1, lim supp ‖µ‖ <∞.

• Covariance scaling: lim supp ‖C‖ <∞.

These assumptions are standard in the context of random matrix
theory and are go in line with the increase in data dimensions met
in the big data paradigm. The assumption on the Euclidean distance
between the means is technically required since it allows to obtain
non trivial results (perfect misclassification or a classification
performance that one would get by simply relying on the priors for
example) on the performance and thus permits to obtain non trivial
conclusions. The same argument applies for the covariance matrix



scaling since a covariance matrix with infinite spectral norm would
lead to a poor performance. Moreover, as we will show later, the
assumption on the covariance matrix C is technically important as
it allows to use fundamental results on resolvent random matrices
[16, 17].

Assumption 2 (Projection matrix). We shall assume that the
projection matrix W writes as W = 1√

pZ, where the entries
Zi,j (1 ≤ i ≤ d, 1 ≤ j ≤ p) of Z are centered with unit variance
and independent identically distributed random variables satisfying
the following moment assumption [16]. There exists ε > 0, such
that E |Zi,j |4+ε <∞.

As can be inferred from Assumption 2, the only assumption
we require for the projection matrix is that it possesses entries with
finite fourth moments without any further restrictions on their
distribution.

3.2. Asymptotic performance

We would like to investigate the performance of LDA when the
data are randomly projected with W. Before doing so, we recall
that the random projection procedure is simply given by

x→Wx, x ∈ Rp, (8)

where W satisfies Assumption 2. From (2), it is easy to derive the
LDA score after projection that we denote by WP-LDA as

WP-LDA (x)

=

(
x− µ0 + µ1

2

)>
W> (WCW>)−1 Wµ+ log

π0
π1
.

Then for Gaussian data, the conditional probability of misclassifica-
tion writes as

εP-LDA
i = P

[
(−1)

i
WP-LDA (x) < 0| x ∈ Ci,W

]
, i ∈ {0, 1},

(9)

where we also condition on the projection matrix W. For Gaussian
data1, εP-LDA

i can be evaluated as

εP-LDA
i = Φ

[
− 1

2

√
µ>W> (WCW>)

−1
Wµ

+
(−1)

i+1
log π0

π1√
µ>W> (WCW>)

−1
Wµ

]
.

(10)

In the following, we provide the main result of the paper related to
the derivation of the asymptotic performance of projected-LDA in
terms of the probability of misclassification. The main result is
summarized in the following proposition.

1This assumption can be relaxed in the large dimensional setting we are
considering because of the linear structure in the classifier which allows the LDA
score to asymptotically behave as a Gaussian random variable. However, for
simplicity we stick to the Gaussian assumption for the rest of the paper.

Proposition 1 (Asymptotic performance). Under Assumptions
1 and 2, then for i ∈ {0, 1} the conditional probability of
misclassification in (10) converges in probability to a non trivial
deterministic limit given by

εP-LDA
i − Φ

− 1
2µ
> (C + δdIp)

−1
µ+ (−1)

i+1
log π0

π1√
µ> (C + δdIp)

−1
µ


→prob. 0,

(11)

where δd is such that

δd tr (C + δdIp)
−1

= p− d. (12)

Proof. The proof relies on computing a deterministic equivalent
for the quantity µ>W> (WCW>)−1 Wµ when Assumptions
1 and 2 are satisfied. We start by writing

µ>W>
(
WCW>

)−1
Wµ

= lim
t↓0

1

p
µ>Z>

(
1

p
ZCZ> + tId

)−1
Zµ

= lim
t↓0

1

p
µ̃>C1/2Z>

(
1

p
ZCZ> + tId

)−1
ZC1/2µ̃

(a)
= lim

t↓0

1

p
µ̃>C1/2Z>ZC1/2

(
1

p
C1/2Z>ZC1/2 + tIp

)−1
µ̃

= ‖µ̃‖2 − lim
t↓0

tµ̃>
(

1

p
C1/2Z>ZC1/2 + tIp

)−1
µ̃

= ‖µ̃‖2 − lim
t↓0
µ̃>
(

1

tp
C1/2Z>ZC1/2 + Ip

)−1
µ̃,

where µ̃ = C−1/2µ and (a) follows from the Woodbury
matrix identity. Theorem 1 in [17] is of special interest to
us since under Assumptions 1 and 2, it allows to construct a

deterministic equivalent of
(

1
tpC

1/2Z>ZC1/2 + Ip

)−1
denoted

by Q (t) ∈ Rp×p in the sense that

a>
(

1

tp
C1/2Z>ZC1/2 + Ip

)−1
b− a>Q (t) b→prob. 0,

for all deterministic a and b in Rp with uniformly bounded
Euclidean norms and t > 0. Q (t) is a deterministic matrix

given by Q (t) =

(
Ip +

d
tp

1+ d
tp δ(t)

C

)−1
, where δ(t) satisfies

δ(t) = 1
d trCQ (t) . As t approaches 0, δ(t) approaches δd given

by (12) and Q (t) approaches
(
Ip + 1

δd
C
)−1

. By Assumption 1,

it is easy to verify that ‖µ̃‖2 is uniformly bounded. Therefore, by
simple application of the previous results and due to the analycity
with respect to t of the above functionals in a neighborhood of 0,



we get

µ>W>
(
WCW>

)−1
Wµ−

[
µ>C−1µ

− µ>C−1/2
(

1

δd
C + Ip

)−1
C−1/2µ

]
→prob. 0.

By simple manipulations, we get

µ>W>
(
WCW>

)−1
Wµ− µ> (C + δdIp)

−1
µ→prob. 0.

Finally, the proof is concluded by simple application of the
continuous mapping theorem.

The first implication of Proposition 1 is that W impacts
the performance only through the reduced dimension d which
can be explained by the absence of structure in the projection
matrix as detailed in Assumption 2. Moreover, the result given
by proposition 1 is universal in the sense that regardless of the
distribution of the projection matrix, the performance will converge
to a universal limit that only depends on the data statistics and the
dimensions involved. To clearly gauge the performance loss
incurred by dimensionality reduction, we consider the case of
equal priors which leads to

εP-LDA − Φ

[
−1

2

√
µ> (C + δdIp)

−1
µ

]
→prob. 0,

which as expected worse than Φ
[
− 1

2

√
µ>C−1µ

]
, the perfor-

mance that we would get if we retain the full dimension p since
δd > 0. In the case where C = Ip, it is also easy to show that

εP-LDA − Φ

[
−1

2

√
d/p ‖µ‖

]
→prob. 0,

as compared to Φ
[
− 1

2 ‖µ‖
]

with full dimension.

3.3. Experiments

We evaluate the performance of randomly projected-LDA using
two types of random matrices. The first one belongs to the class of
Gaussian random matrices where the entries are zero mean unit
variance and all moments are finite which satisfies Assumption 2.
The second type is given by the class of Bernoulli random matrices
where the entries are generated as follows

Zi,j = 1− 2Bi,j , Bi,j ∼ Bernoulli(1/2),

which satisfies Assumption 2. The top two sub-figures in Figure
1 are obtained for equal priors (π0 = π1) Gaussian generated
data as in (1) with p = 800, µ0 = 0p, µ1 = 3√

p1p and

C = {0.4|i−j|}i,j . The empirical performance is obtained by
evaluating the misclassification rate over 104 testing samples. The
bottom sub-figures are obtained for the popular MNIST dataset
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Fig. 1. Misclassification rate of randomly-projected LDA.

[18] where C0 is taken to be the digit 2 whereas C1 is given by
digit 3. For MNIST data, we obtain the data statistics by relying
on sample estimates computed from the training data. As we
can see in Figure 1, the prediction obtained by proposition 1 is
highly accurate for Gaussian data especially when d is relatively
large to comply with Assumption 1. Although our derivations
heavily rely on the Gaussian assumption of the data, the theoretical
formula obtained in Proposition 1 is able to give relatively accurate
predictions on the performance for MNIST data as well. Finally,
the universality property discussed earlier is also verified since
both Gaussian and Bernoulli random projections yield almost the
same classification performance especially for Gaussian data.

4. CONCLUSIONS AND FUTURE WORKS

The paper investigated the performance of projected-LDA in terms
of the probability of misclassification. Under mild assumptions on
the data statistics and the projection matrix and using fundamental
results from random matrix theory, we showed that the performance
asymptotically converges to a deterministic limit that relates the
performance in terms of the problem’s statistics and dimensions.
Numerical results have been provided to support our theoretical
claim for both synthetic and real data. A possible future extension
of the present work is to consider the performance with estimated
statistics. The analysis can also be extended to investigate the
performance quadratic discriminant analysis and other model based
classification algorithms.
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[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-Based Learning Applied To Document
Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.


	 Introduction
	 Linear discriminant analysis with random projections
	 Linear discriminant analysis
	 Random projections

	 Main results
	 Technical assumptions
	 Asymptotic performance
	 Experiments

	 Conclusions and future works
	 References

